I ricercatori hanno sviluppato nanoparticelle in grado di penetrare nella retina neurale e fornire mRNA alle cellule dei fotorecettori il cui corretto funzionamento rende possibile la visione.

Gli scienziati dell’Oregon State University College of Pharmacy hanno dimostrato in modelli animali la possibilità di utilizzare nanoparticelle lipidiche e RNA messaggero, la tecnologia alla base dei vaccini COVID-19, per trattare la cecità associata a una rara condizione genetica.

Lo studio è stato pubblicato oggi (11 gennaio 2023) sulla rivista I progressi della scienza. È stato guidato dal professore associato di scienze farmaceutiche dell’OSU Gaurav Sahay, dallo studente di dottorato dell’Oregon State Marco Herrera-Barrera e dall’assistente professore di oftalmologia dell’Oregon Health & Science University Renee Ryals.

Gli scienziati hanno superato quella che era stata la principale limitazione dell’utilizzo di nanoparticelle lipidiche, o LNP, per trasportare materiale genetico ai fini della terapia della vista, facendole raggiungere la parte posteriore dell’occhio, dove si trova la retina.

I lipidi sono acidi grassi e composti organici simili tra cui molti oli e cere naturali. Le nanoparticelle sono minuscoli pezzi di materiale di dimensioni variabili da uno a 100 miliardesimi di metro. L’RNA messaggero fornisce istruzioni alle cellule per produrre una particolare proteina.

Con i vaccini contro il coronavirus, l’mRNA trasportato dagli LNP istruisce le cellule a creare un pezzo innocuo della proteina spike del virus, che innesca una risposta immunitaria dal corpo. Come terapia per la compromissione della vista derivante dalla degenerazione retinica ereditaria, o IRD, l’mRNA istruirebbe le cellule dei fotorecettori – difettose a causa di una mutazione genetica – a produrre le proteine ​​necessarie per la vista.

L’IRD comprende un gruppo di disturbi di varia gravità e prevalenza che colpiscono una persona su poche migliaia in tutto il mondo.

Gli scienziati hanno dimostrato, in una ricerca che ha coinvolto topi e primati non umani, che gli LNP dotati di peptidi erano in grado di passare attraverso le barriere negli occhi e raggiungere la retina neurale, dove la luce viene trasformata in segnali elettrici che il cervello converte in immagini.

“Abbiamo identificato un nuovo set di peptidi che possono raggiungere la parte posteriore dell’occhio”, ha detto Sahay. “Abbiamo usato questi peptidi per agire come codici postali per consegnare nanoparticelle che trasportano materiali genetici all’indirizzo previsto all’interno dell’occhio”.

“I peptidi che abbiamo scoperto possono essere usati come ligandi mirati direttamente coniugati a RNA silenzianti, piccole molecole per terapie o come sonde di imaging”, ha aggiunto Herrera-Barrera.

Sahay e Ryals hanno ricevuto una sovvenzione di 3,2 milioni di dollari dal National Eye Institute per continuare a studiare la promessa delle nanoparticelle lipidiche nel trattamento della cecità ereditaria. Condurranno la ricerca sull’uso degli LNP per fornire uno strumento di editing genetico che potrebbe eliminare i geni cattivi nelle cellule dei fotorecettori e sostituirli con geni correttamente funzionanti.

La ricerca mira a sviluppare soluzioni per le limitazioni associate all’attuale principale mezzo di consegna per l’editing genetico: un tipo di virus noto come virus adeno-associato o AAV.

“L’AAV ha una capacità di confezionamento limitata rispetto agli LNP e può provocare una risposta del sistema immunitario”, ha affermato Sahay. “Inoltre, non funziona in modo fantastico nel continuare a esprimere gli enzimi che lo strumento di modifica utilizza come forbici molecolari per eseguire tagli nel DNA da modificare. Speriamo di utilizzare ciò che abbiamo appreso finora sugli LNP per sviluppare un sistema di consegna dell’editor di geni migliorato”.

Riferimento: “Le nanoparticelle lipidiche guidate da peptidi forniscono mRNA alla retina neurale di roditori e primati non umani” 11 gennaio 2023, I progressi della scienza.
DOI: 10.1126/sciadv.add4623

Lo studio LNP guidato dai peptidi è stato finanziato dal National Institutes of Health. Hanno partecipato alla ricerca per l’Oregon State anche i docenti del College of Pharmacy Oleh Taratula e Conroy Sun, i ricercatori post-dottorato Milan Gautam e Mohit Gupta, gli studenti di dottorato Antony Jozic e Madeleine Landry, l’assistente di ricerca Chris Acosta e lo studente universitario Nick Jacomino, uno studente di bioingegneria al College di Ingegneria che si è laureata nel 2020.

Da un’altra testata giornalistica news de www.europeantimes.news

9.5 C
Rome
giovedì, Aprile 3, 2025
- Pubblicità -
notizieAmbientePolimeri che possono uccidere i batteri

Polimeri che possono uccidere i batteri

INFORMATIVA: Alcuni degli articoli che pubblichiamo provengono da fonti non in lingua italiana e vengono tradotti automaticamente per facilitarne la lettura. Se vedete che non corrispondono o non sono scritti bene, potete sempre fare riferimento all'articolo originale, il cui link è solitamente in fondo all'articolo. Grazie per la vostra comprensione.


I batteri resistenti agli antibiotici sono diventati una minaccia in rapida crescita per la salute pubblica. Ogni anno rappresentano oltre 2,8 milioni di infezioni, secondo i Centri statunitensi per il controllo e la prevenzione delle malattie. Senza nuovi antibiotici, anche le lesioni e le infezioni più comuni possono potenzialmente diventare letali.

Gli scienziati sono ora un passo avanti verso l’eliminazione di questa minaccia, grazie a una collaborazione guidata dalla Texas A&M University che ha sviluppato una nuova famiglia di polimeri in grado di uccidere i batteri senza indurre resistenza agli antibiotici distruggendo la membrana di questi microrganismi.

“I nuovi polimeri che abbiamo sintetizzato potrebbero aiutare a combattere la resistenza agli antibiotici in futuro fornendo molecole antibatteriche che operano attraverso un meccanismo contro il quale i batteri non sembrano sviluppare resistenza”, ha affermato il dottor Quentin Michaudel, assistente professore presso il Dipartimento di Chimica e responsabile ricercatore nella ricerca, pubblicata l’11 dicembre nel Atti dell’Accademia Nazionale delle Scienze (PNAS).

Lavorando all’interfaccia tra chimica organica e scienza dei polimeri, il Laboratorio Michaudel è stato in grado di sintetizzare il nuovo polimero progettando attentamente una molecola carica positivamente che può essere cucita molte volte per formare una grande molecola composta dallo stesso motivo carico ripetuto utilizzando un materiale accuratamente selezionato catalizzatore chiamato AquaMet. Secondo Michaudel, quel catalizzatore si rivela fondamentale, dato che deve tollerare un’elevata concentrazione di cariche ed essere anche solubile in acqua, una caratteristica che descrive come insolita per questo tipo di processo.

Dopo aver ottenuto il successo, il Michaudel Lab ha messo alla prova i suoi polimeri contro due principali tipi di batteri resistenti agli antibiotici – E. coli e Staphylococcus aureus (MRSA) – in collaborazione con il gruppo della Dott.ssa Jessica Schiffman presso l’Università del Massachusetts Amherst. In attesa di questi risultati, i ricercatori hanno anche testato la tossicità dei loro polimeri contro i globuli rossi umani.

“Un problema comune con i polimeri antibatterici è la mancanza di selettività tra batteri e cellule umane quando prendono di mira la membrana cellulare”, ha spiegato Michaudel. “La chiave è trovare il giusto equilibrio tra l’inibizione efficace della crescita dei batteri e l’uccisione indiscriminata di diversi tipi di cellule”.

Michaudel attribuisce alla natura multidisciplinare dell’innovazione scientifica e alla generosità dei ricercatori dedicati in tutto il campus e nel paese della Texas A&M il merito del successo del suo team nel determinare il catalizzatore perfetto per l’assemblaggio delle loro molecole.

“Questo progetto è stato elaborato per diversi anni e non sarebbe stato possibile senza l’aiuto di diversi gruppi, oltre ai nostri collaboratori dell’UMass”, ha affermato Michaudel. “Ad esempio, abbiamo dovuto spedire alcuni campioni al Letteri Lab dell’Università della Virginia per determinare la lunghezza dei nostri polimeri, cosa che ha richiesto l’uso di uno strumento che pochi laboratori nel paese possiedono. Siamo inoltre enormemente grati a [biochemistry Ph.D. candidate] Nathan Williams e il dottor Jean-Philippe Pellois qui alla Texas A&M, che hanno fornito la loro esperienza nella nostra valutazione della tossicità nei confronti dei globuli rossi.”

Michaudel afferma che il team si concentrerà ora sul miglioramento dell’attività dei suoi polimeri contro i batteri – in particolare, sulla loro selettività per le cellule batteriche rispetto alle cellule umane – prima di passare a in vivo saggi.

“Stiamo sintetizzando una varietà di analoghi con questo obiettivo entusiasmante in mente”, ha affermato.

L’articolo del team, che include il membro del Michaudel Lab e il dottorato in chimica della Texas A&M. laureata Dr. Sarah Hancock ’23 come primo autore, può essere visualizzato online insieme alle relative figure e didascalie. Altri contributori chiave del Michaudel Lab sono lo studente laureato in chimica An Tran ’23, lo studioso post-dottorato Dr. Arunava Maity e l’ex studioso post-dottorato Dr. Nattawut Yuntawattana, che ora è assistente professore di scienza dei materiali presso l’Università Kasetsart in Tailandia.

Questa ricerca è stata finanziata principalmente dal National Institutes of Health Maximizing Investigators’ Research Award (MIRA) di Michaudel attraverso l’Istituto nazionale di scienze mediche generali.

Nato a La Rochelle, in Francia, Michaudel è entrato a far parte della facoltà di Chimica della Texas A&M nel 2018 e ricopre un incarico congiunto presso il Dipartimento di Scienza e Ingegneria dei Materiali. Oltre a un NIH MIRA nel 2020, i suoi riconoscimenti alla carriera fino ad oggi includono un premio 2022 della National Science Foundation Faculty Early Career Development (CAREER), un premio Young Investigator dell’American Chemical Society Polymeric Materials: Science and Engineering (PMSE) 2022 e un Thieme 2021 Premio riviste di chimica.



Da un’altra testata giornalistica. news de www.sciencedaily.com

- Pubblicità -
- Pubblicità -Newspaper WordPress Theme

Contenuti esclusivi

Iscriviti oggi

OTTENERE L'ACCESSO ESCLUSIVO E COMPLETO AI CONTENUTI PREMIUM

SOSTENERE IL GIORNALISMO NON PROFIT

Get unlimited access to our EXCLUSIVE Content and our archive of subscriber stories.

- Pubblicità -Newspaper WordPress Theme

Articoli più recenti

Altri articoli

- Pubblicità -Newspaper WordPress Theme

INFORMATIVA: Alcuni degli articoli che pubblichiamo provengono da fonti non in lingua italiana e vengono tradotti automaticamente per facilitarne la lettura. Se vedete che non corrispondono o non sono scritti bene, potete sempre fare riferimento all'articolo originale, il cui link è solitamente in fondo all'articolo. Grazie per la vostra comprensione.