I ricercatori hanno sviluppato nanoparticelle in grado di penetrare nella retina neurale e fornire mRNA alle cellule dei fotorecettori il cui corretto funzionamento rende possibile la visione.

Gli scienziati dell’Oregon State University College of Pharmacy hanno dimostrato in modelli animali la possibilità di utilizzare nanoparticelle lipidiche e RNA messaggero, la tecnologia alla base dei vaccini COVID-19, per trattare la cecità associata a una rara condizione genetica.

Lo studio è stato pubblicato oggi (11 gennaio 2023) sulla rivista I progressi della scienza. È stato guidato dal professore associato di scienze farmaceutiche dell’OSU Gaurav Sahay, dallo studente di dottorato dell’Oregon State Marco Herrera-Barrera e dall’assistente professore di oftalmologia dell’Oregon Health & Science University Renee Ryals.

Gli scienziati hanno superato quella che era stata la principale limitazione dell’utilizzo di nanoparticelle lipidiche, o LNP, per trasportare materiale genetico ai fini della terapia della vista, facendole raggiungere la parte posteriore dell’occhio, dove si trova la retina.

I lipidi sono acidi grassi e composti organici simili tra cui molti oli e cere naturali. Le nanoparticelle sono minuscoli pezzi di materiale di dimensioni variabili da uno a 100 miliardesimi di metro. L’RNA messaggero fornisce istruzioni alle cellule per produrre una particolare proteina.

Con i vaccini contro il coronavirus, l’mRNA trasportato dagli LNP istruisce le cellule a creare un pezzo innocuo della proteina spike del virus, che innesca una risposta immunitaria dal corpo. Come terapia per la compromissione della vista derivante dalla degenerazione retinica ereditaria, o IRD, l’mRNA istruirebbe le cellule dei fotorecettori – difettose a causa di una mutazione genetica – a produrre le proteine ​​necessarie per la vista.

L’IRD comprende un gruppo di disturbi di varia gravità e prevalenza che colpiscono una persona su poche migliaia in tutto il mondo.

Gli scienziati hanno dimostrato, in una ricerca che ha coinvolto topi e primati non umani, che gli LNP dotati di peptidi erano in grado di passare attraverso le barriere negli occhi e raggiungere la retina neurale, dove la luce viene trasformata in segnali elettrici che il cervello converte in immagini.

“Abbiamo identificato un nuovo set di peptidi che possono raggiungere la parte posteriore dell’occhio”, ha detto Sahay. “Abbiamo usato questi peptidi per agire come codici postali per consegnare nanoparticelle che trasportano materiali genetici all’indirizzo previsto all’interno dell’occhio”.

“I peptidi che abbiamo scoperto possono essere usati come ligandi mirati direttamente coniugati a RNA silenzianti, piccole molecole per terapie o come sonde di imaging”, ha aggiunto Herrera-Barrera.

Sahay e Ryals hanno ricevuto una sovvenzione di 3,2 milioni di dollari dal National Eye Institute per continuare a studiare la promessa delle nanoparticelle lipidiche nel trattamento della cecità ereditaria. Condurranno la ricerca sull’uso degli LNP per fornire uno strumento di editing genetico che potrebbe eliminare i geni cattivi nelle cellule dei fotorecettori e sostituirli con geni correttamente funzionanti.

La ricerca mira a sviluppare soluzioni per le limitazioni associate all’attuale principale mezzo di consegna per l’editing genetico: un tipo di virus noto come virus adeno-associato o AAV.

“L’AAV ha una capacità di confezionamento limitata rispetto agli LNP e può provocare una risposta del sistema immunitario”, ha affermato Sahay. “Inoltre, non funziona in modo fantastico nel continuare a esprimere gli enzimi che lo strumento di modifica utilizza come forbici molecolari per eseguire tagli nel DNA da modificare. Speriamo di utilizzare ciò che abbiamo appreso finora sugli LNP per sviluppare un sistema di consegna dell’editor di geni migliorato”.

Riferimento: “Le nanoparticelle lipidiche guidate da peptidi forniscono mRNA alla retina neurale di roditori e primati non umani” 11 gennaio 2023, I progressi della scienza.
DOI: 10.1126/sciadv.add4623

Lo studio LNP guidato dai peptidi è stato finanziato dal National Institutes of Health. Hanno partecipato alla ricerca per l’Oregon State anche i docenti del College of Pharmacy Oleh Taratula e Conroy Sun, i ricercatori post-dottorato Milan Gautam e Mohit Gupta, gli studenti di dottorato Antony Jozic e Madeleine Landry, l’assistente di ricerca Chris Acosta e lo studente universitario Nick Jacomino, uno studente di bioingegneria al College di Ingegneria che si è laureata nel 2020.

Da un’altra testata giornalistica news de www.europeantimes.news

4.3 C
Rome
sabato, Aprile 5, 2025
- Pubblicità -
notizieAmbienteCome un "conduttore" dà un senso al caos nei primi embrioni di...

Come un “conduttore” dà un senso al caos nei primi embrioni di topo

INFORMATIVA: Alcuni degli articoli che pubblichiamo provengono da fonti non in lingua italiana e vengono tradotti automaticamente per facilitarne la lettura. Se vedete che non corrispondono o non sono scritti bene, potete sempre fare riferimento all'articolo originale, il cui link è solitamente in fondo all'articolo. Grazie per la vostra comprensione.


Il primo sviluppo embrionale è tumultuoso. Implica una rapida sequenza di eventi, tra cui la divisione cellulare, la differenziazione e molti compartimenti che si muovono all’interno di ciascuna cellula. Come in un’esibizione d’orchestra in cui ogni membro della band deve iniziare a suonare al momento giusto e in perfetta armonia, questi processi devono essere sincronizzati e coordinati con precisione per garantire che l’embrione si sviluppi normalmente.

Come le cellule diano un senso a questo caos all’inizio dello sviluppo di un embrione è una questione aperta. La proteina NKX1-2 ha un ruolo cruciale, secondo un nuovo studio pubblicato oggi sulla rivista Rapporti sulle cellule staminali a cura della Professoressa Pia Cosma dell’ICREA Research presso il Center for Genomic Adjustment (CRG) di Barcellona e del Professor Andrea Califano Presidente del Chan Zuckerberg Biohub di New York e Professore alla Columbia University.

NKX1-2 si comporta come un direttore d’orchestra, assicurando abilmente che le istruzioni genetiche per lo sviluppo dell’embrione vengano eseguite correttamente e nei tempi giusti. La proteina aiuta a gestire la produzione e l’organizzazione del meccanismo cellulare per la produzione delle proteine ​​(come i ribosomi) ed è fondamentale anche per mantenere i cromosomi organizzati e adeguatamente distribuiti quando le cellule si dividono.

Quando i ricercatori hanno inibito sperimentalmente la funzione di NKX1-2 nei topi, hanno scoperto che il nucleolo (una parte del nucleo che assembla i ribosomi) era gravemente alterato, interrompendo la capacità dell’embrione di produrre correttamente i ribosomi. Hanno anche scoperto che gli embrioni composti da 2 a 4 cellule non erano in grado di distribuire correttamente i cromosomi durante la divisione cellulare e smettevano di crescere in queste primissime fasi di sviluppo.

“NKX1-2 appartiene a una famiglia di proteine ​​note per svolgere un ruolo cruciale nello sviluppo iniziale e nella formazione degli organi. Sebbene sapessimo che i membri di questa famiglia erano importanti nello sviluppo generale, il ruolo specifico di NKX1-2, soprattutto nelle prime fasi embrionali, era “Non è ben compreso”, spiega Pia Cosma, professoressa di ricerca dell’ICREA, autrice corrispondente dello studio.

“È interessante che tali determinanti meccanicistici dell’embriogenesi possano essere identificati assemblando e interrogando una rete regolatrice di cellule staminali embrionali di topo, utilizzando metodologie originariamente sviluppate per la ricerca sul cancro”, aggiunge il dottor Califano, coautore dello studio.

Date le somiglianze nei primi processi di sviluppo tra topi e esseri umani, i risultati offrono nuovi indizi sulle cause inspiegabili dei problemi dello sviluppo, compresi gli aborti spontanei. Gli aborti spesso derivano da anomalie cromosomiche, che possono derivare da problemi come quelli osservati nello studio: segregazione cromosomica impropria ed errori di divisione cellulare. Ulteriori ricerche potrebbero esplorare se esiste una controparte umana che influenza questi processi fondamentali come accade nei topi, e cosa succede quando fallisce.

Nonostante l’importanza di NKX1-2 nello sviluppo iniziale dell’embrione, i ricercatori sospettano che rimangano da scoprire altri “conduttori”. “NKX1-2 è espresso a livelli molto bassi, il che rende estremamente difficile rilevarlo. È come cercare di trovare un ago in un pagliaio utilizzando i metodi tradizionali in biologia. Ripetendo i nostri metodi si potrebbe aiutare a trovare altri elementi rari e critici che sono stati storicamente trascurato”, aggiunge il dottor Cosma.



Da un’altra testata giornalistica. news de www.sciencedaily.com

- Pubblicità -
- Pubblicità -Newspaper WordPress Theme

Contenuti esclusivi

Iscriviti oggi

OTTENERE L'ACCESSO ESCLUSIVO E COMPLETO AI CONTENUTI PREMIUM

SOSTENERE IL GIORNALISMO NON PROFIT

Get unlimited access to our EXCLUSIVE Content and our archive of subscriber stories.

- Pubblicità -Newspaper WordPress Theme

Articoli più recenti

Altri articoli

- Pubblicità -Newspaper WordPress Theme

INFORMATIVA: Alcuni degli articoli che pubblichiamo provengono da fonti non in lingua italiana e vengono tradotti automaticamente per facilitarne la lettura. Se vedete che non corrispondono o non sono scritti bene, potete sempre fare riferimento all'articolo originale, il cui link è solitamente in fondo all'articolo. Grazie per la vostra comprensione.